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Abstract 

The Box-Jenkins time series analysis rests on important concept as stationarity and residuals 

of ARMA models follows white noise. These concepts are insufficient for the analysis of 

financial time series. The paper proposes main characteristics of volatility in financial time 

series and general overview of most common models for time series modeling. This paper 

also outlines characteristics of DAX and SAX index’s volatility and shows how to specify a 

composite conditional mean and variance model using GARCH(1,1) model. We finally apply 

GARCH methodology to estimate VaR and compare with other approach for DAX and SAX 

indices. In general those indices might represent development and variability of business 

sector in German and Slovak economy as well. The paper presents conditional model for 

volatility of economic growth and should be the basis for further investigation of mechanisms 

in the real economy in Slovakia as well as comparison with volatility of economic growth in 

Germany 

 

Abstrakt 

Metodológia analýzy časových radov podľa Box-Jenkins je založená na predpoklade stacionarity a 

predpoklade, že rezídua ARMA modelu nasledujú biely šum. Tieto predpoklady však nie sú často krát 

splnené pri analýze, modelovaní finančných časových radov. Táto práca približuje základne 

charakteristiky volatility finančných časových radov a prináša prehľad jedného z najpoužívanejších 

modelov na štatistický opis časového radu. Charakteristika volatility, ako aj špecifikácia 

kompozitného modelu podmienenej strednej hodnoty AR(1) a podmienenej variancie GARCH(1,1), sú 

demonštrované na časovom rade DAX a SAX indexu. Na koniec je metodológia GARCH aplikovaná 
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na odhad VaR a konfrontovaná s ostatnými bežnými metódami výpočtu VaR. Indexy DAX a SAX 

reprezentujú pri istej miere zovšeobecnenia vývoj a variabilitu ekonomiky Nemecka respektíve 

Slovenska, najmä jej podnikateľskej sféry. Práca prináša model podmienenej volatility ekonomického 

vývoja a je základ ďalšieho skúmania mechanizmov v reálnej ekonomike na Slovensku ako aj 

porovnanie s Nemeckom 
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Introduction 

Financial time series can be characterized by three separate components – seasonality, trend and 

fluctuations around components. The trend is mostly the strategic fundaments for a given variable time 

series especially from a longer time perspective. Fluctuations rate in financial variables is called 

volatility, which is the square root of the variance. 

 

1. FINANCIAL SERIES 

 

1.1 Volatility of financial time series 

Typically the volatility has these features: 

• Volatility clustering: in yield occur frequently phenomena that high volatility is followed by 

high volatility and low by low volatility, thus the volatility has the autocorrelation characteristics. That 

is why it is interesting to use GARCH model for modeling the distribution of income, even when the 

model cannot explain this phenomenon. 

• Leverage effect: refers to the well-established relationship between stock returns and both 

implied and realized volatility: volatility increases when the stock price falls. A standard explanation 

ties the phenomenon to the effect a change in market valuation of a firm's equity has on the degree of 

leverage in its capital structure, with an increase in leverage producing an increase in stock volatility. 

• Volatility is evolving continuously over time, volatility jumps are continuous. 

• Volatility not diverges to infinity, but in the long term is often stationary. 
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1.2 Time series - introduction 

1.2.1 Standard time series models:  

The class of ARMA models is the most widely used for the prediction of second-order stationary 

processes
2
. It uses an iterative six-stage scheme summarized by Francq, Zakoian (2010): 

(i) a priori identification of the differentiation order d (or choice of another 

transformation); 

(ii) a priori identification of the orders p and q; 

(iii) estimation of the parameters  

(iv) validation; 

(v) choice of a model; 

(vi) prediction 

A number of sources describe ARMA; among others Bollerslev (2011): 

𝑦𝑡=E(𝑦𝑡|Ωt−1) + 𝜀𝑡  

E(𝑦𝑡|Ωt−1) = 𝜇𝑡(𝜃)  

𝑉𝑎𝑟(𝑦𝑡|Ωt−1) = 𝐸(𝜀𝑡
2|Ωt−1) = ℎ𝑡(𝜃) = 𝜎2  

ARMA(p,q) model: 

𝜇𝑡(𝜃) = 𝜑0+𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞  

 

We may derive main statistic description of time series 

Conditional mean  𝜇𝑡(𝜃):  varies with Ω_(t-1) 

Conditional variance ℎ𝑡(𝜃):  constant 

Unconditional mean 𝜇(𝜃):  constant  

Unconditional variance ℎ(𝜃):  constant 

1.2.2 ARCH – AutoRegressive Conditional Heteroskedasticity:  

Modeling financial time series is a complex problem. This complexity is crucial even we transform 

non-stationary price time series into series of return which had seemed to be stationary and followed 

by white noise. Francq, Zakoian outlines empirical findings why we  should improve model as Engle 

(1982) did; presented by Bollereslev (2011): 

                                                           
2
 To simplify presentation, we do not consider seasonal series, for which SARIMA models can be considered 

This methodology is proposed by Box et al. (2008), 4
th

 edition of famous Box, Jenkins (1994) 
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yt=E(yt|Ωt−1) + εt  

E(yt|Ωt−1) = μt(θ)  

Var(yt|Ωt−1) = E(εt
2|Ωt−1) = ht(θ)  

ARCH(q) model: 

ht = ω + α1εt−1
2 + ⋯ + αqεt−q

2   

Major improvement is to consider heteroscedasticity and suggest model variance with lagged 

Conditional mean  𝜇𝑡(𝜃):  varies with Ω_(t-1) 

Conditional variance ℎ𝑡(𝜃):  varies with Ω_(t-1) 

Unconditional mean 𝜇(𝜃):  constant  

Unconditional variance ℎ(𝜃):  constant 

 

1.2.3 GARCH - Generalized ARCH:  

Since the articles by Engle (1982) on ARCH (autoregressive conditionally heteroscedastic) processes a 

large variety of papers have been devoted to the statistical inference of these models, any of them is 

difficult to understand and compute. Complexity is proportional with number of parameters so 

Bollerslev (1986) improved model with lagged squared innovations and dramatically decreased time 

of inference. 

yt=E(yt|Ωt−1) + εt  

E(yt|Ωt−1) = μt(θ)  

Var(yt|Ωt−1) = E(εt
2|Ωt−1) = ht(θ)  

GARCH(p,q) model: 

ht = ω + α1εt−1
2 + ⋯ + αqεt−q

2 + β1ht−1 + ⋯ + βpht−p  

The simple GARCH(1,1) model often works very well  ht = ω + αεt−1
2 + βht−1  

Conditional mean  𝜇𝑡(𝜃):  varies with Ω_(t-1) 

Conditional variance ℎ𝑡(𝜃):  varies with Ω_(t-1) 

Unconditional mean 𝜇(𝜃):  constant  

Unconditional variance ℎ(𝜃):  constant 

  

http://www.sciencedirect.com/science/article/pii/S0304414902000972#BIB13
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2. APPLICATION GARCH MODEL IN RISK MANAGEMENT 

The recent financial crisis and its impact on the broader economy underscore the importance of 

financial risk management in today's world. At the same time, financial products and investment 

strategies are becoming increasingly complex. Today, it is more important than ever that risk 

managers possess a sound understanding of mathematics and statistics in order to ensure that the 

business model has fewer surprises. Volatility is a measure which is by definition about variability in 

general and applied to return series of financial instrument it is about uncertainty of future profits. 

GARCH models led to a fundamental change to the approaches used in finance, through an efficient 

modeling of volatility (or variability) of the prices of financial assets. 

The aim of the paper is to provide example how use GARCH model in practical finance management. 

It is worth mention that the most important decision is on senior executives who have limited time and 

knowledge to make a decision what explained use of GARCH (1,1) model. Use of this model could be 

explained by the fact that they are still simple enough to be usable in practice. 

 

2.1 Specify and estimate Conditional Mean and Variance Models using 

GARCH model 

 

The German Stock Index is a total return index of 30 selected German blue chip stocks traded on the 

Frankfurt Stock Exchange. The equities use free float shares in the index calculation. The DAX has a 

base value of 1,000 as of December 31, 1987. As of June 18, 1999 only XETRA equity prices are used 

to calculate all DAX indices 

This example shows how to estimate a composite conditional mean and variance model using GARCH 

(1,1) for variance and AR(1) for mean. We use software Matlab statistical toolbox and follow 

algorithm from Matlab’s tutorial
3
: 

Step 1. Load the data and specify the model: Data was prepared from 

http://finance.yahoo.com/q/hp?s=^GDAXI+Historical+Prices and contained price time series of DAX 

from 3.1.2000 to 28.3.2014 which was transformed to the continuously compounded returns series and 

the same process was done with data obtained from 

                                                           
3
http://www.mathworks.com/help/econ/conditional-mean-and-variance-model-for-nasdaq-

returns.html#zmw57dd0e26313 

http://finance.yahoo.com/q/hp?s=%5eGDAXI+Historical+Prices
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http://www.bsse.sk/Obchodovanie/Indexy/IndexSAX.aspx contained price time series of SAX from 

7.1.2000 to 28.3.2014 

Pt means price of DAX/SAX index in time t 

rt means return of DAX/SAX index from time t-1 to t 

𝑃𝑡 = (1 + 𝑟)𝑃𝑡−1   

𝑃𝑡 = lim𝑛→∞ (1 +
𝑟

𝑛
)

𝑛
𝑃𝑡−1  

𝑃𝑡 = lim𝑛→∞ ((1 +
1

𝑛
𝑟⁄
)

𝑛
𝑟⁄

)

𝑟

𝑃𝑡−1 = 𝑒𝑟𝑡 ∗ 𝑃𝑡−1  

𝑟𝑡 = ln
𝑃𝑡

𝑃𝑡−1
= ln 𝑃𝑡 − ln 𝑃𝑡−1  

 

Graphical representation of DAX returns in figure 1 outlines all characteristics of volatility mentioned 

in chapter 1.1. SAX returns does not show the characteristics explicitly: 

• Volatility clustering: after huge crisis volatility remains high; in “good” times between crisis 

stays low 

• Leverage effect: with decrease of DAX price increases volatility of returns 

• evolving continuously: no jumps 

• not diverges to infinity even during Global financial crises in 2008 called the worst financial 

crisis since the Great Depression of the 1930s  

  

http://www.bsse.sk/Obchodovanie/Indexy/IndexSAX.aspx
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Figure 1: Price [GDAX] and return [d_lnGDAX] of DAX index 

 
Source: http://finance.yahoo.com/q/hp?s=^GDAXI+Historical+Prices prepared by author 

 

 

Figure 2: Price [SAX] and return [d_lnSAX] of SAX index 

 
Source: http://www.bsse.sk/Obchodovanie/Indexy/IndexSAX.aspx prepared by author 

 

Step 2. Check the series for autocorrelation: ACF or PACF in Figures 3 and 4 are not suggested 

significant AR or MA process for DAX or SAX returns so we continue with step 3. 

  

http://finance.yahoo.com/q/hp?s=%5eGDAXI+Historical+Prices
http://www.bsse.sk/Obchodovanie/Indexy/IndexSAX.aspx
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Figure 3: ACF and PACF of DAX returns time series 

 
Source: prepared by author 

 

Figure 4: ACF and PACF of SAX returns time series 

 
Source: prepared by author 

 

 

Step 3. Test the significance of the autocorrelations: The null hypothesis that all autocorrelations 

are 0 up to lag 5 is rejected (h = 1) p = 5.5839e-04 for DAX returns. This test is rejected also for SAX 

returns however p is much higher (0.0157) 

Step 4. Check the series for conditional heteroscedasticity: Figure 5 shows the sample ACF and 

PACF of the squared return series. The autocorrelation functions show significant serial dependence. 

SAX returns does not offer so much certainty on Figure 6. 
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Figure 5: ACF and PACF of squared DAX returns time series 

 
Source: prepared by author 

 

Figure 6: ACF and PACF of squared SAX returns time series 

 
Source: prepared by author 

Step 5. Test for significant ARCH effects: Conduct an Engle's ARCH test. Test the null hypothesis 

of no conditional heteroscedasticity against the alternative hypothesis of an ARCH model with two 

lags (which is locally equivalent to a GARCH(1,1) model). Result is H = 0 by p = 0. Test rejected null 

hypothesis for DAX index also for SAX (but p of test equals 0.1078 for SAX) 

Step 6. Specify a conditional mean and variance model: In Table 1 is specified parameters of the 

AR(1) model for the conditional mean of the DAX and SAX returns, and the GARCH(1,1) model for 

the conditional variance. This is a model of the form: 

𝑟𝑡 = 𝜑0+𝜑1𝑟𝑡−1 + 𝜀𝑡 [AR(1) model]  
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where  

𝜀𝑡 = 𝜎𝑡𝑧𝑡   

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 [GARCH(1,1) model]  

𝑧𝑡 - is an independent and identically distributed standardized Gaussian process. 

 

Table 1: parameters of AR(1) for mean and GARCH(1,1) for variance Gaussian residuals 

 

Source: prepared by author 

 

Step 7. Infer the conditional variances and residuals: Figures 7 shows that the conditional variance 

of DAX return increases after observation 750, 2 250, 3 000. This corresponds to the increased 

volatility seen in the original return series at the end of 2002 - the Internet bubble bursting; at the end 

of 2008 – Global Financial Crisis (The active phase of the crisis, which manifested as a liquidity 

crisis); 2011 - fears of contagion of the European sovereign debt crisis to Spain and Italy 

From part of Figure 7 we may conclude that the standardized residuals have more large values (larger 

than 2 or 3 in absolute value) than expected under a standard normal distribution. This suggests a 

Student's t distribution might be more appropriate for the innovation distribution – next step 

Figures 8 shows that the conditional variance of SAX return increases after observation 750, 2 250, 2 

500. It is hard to say whether this volatility increses are explained with shock on global market and it 

is worth to say that represet dates in original data series are in March 2003, April 2009 and April 2010 

so lagged few month after shock on global markets. 

 

  

Value
Standard 

Error

 t 

Statistic
Value

Standard 

Error
 t Statistic

Constant 0.073 0.019 3.922 0.021 0.018 1.168

AR{1} -0.025 0.019 -1.327 -0.072 0.016 -4.501

Model Parameter Value
Standard 

Error

 t 

Statistic
Value

Standard 

Error
 t Statistic

Constant 0.023 0.004 5.933 0.009 0.001 10.446

GARCH{1} 0.902 0.008 114.314 0.970 0.001 885.640

ARCH{1} 0.088 0.007 12.128 0.026 0.001 27.142

DAX Index

Model Parameter

SAX Index

GARCH(1,1)

AR(1)
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Figure 7: Conditional variance and standard residuals infers from AR(1)/GARCH(1,1) model for 

DAX 

 
Source: prepared by author 

 

Figure 8: Conditional variance and standard residuals infers from AR(1)/GARCH(1,1) model for 

SAX 

 
Source: prepared by author 

Step 8. Fit a model with a t innovation distribution: In Table 2 is specified parameters of the AR(1) 

model for the conditional mean of the DAX and SAX returns, and the GARCH(1,1) model for the 

conditional variance. This is a model of the form 

𝑟𝑡 = 𝜑0+𝜑1𝑟𝑡−1 + 𝜀𝑡 [AR(1) model]  

where  
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𝜀𝑡 = 𝜎𝑡𝑧𝑡   

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 [GARCH(1,1) model]  

𝑧𝑡 - is an independent and identically distributed Student's t process. 

Table 2: parameters of AR(1) for mean and GARCH(1,1) for variance students residuals 

 
Source: prepared by author 

 

Graph of Conditional variance and standard residuals of this model in Figure 5 follows the same path 

as for normal distributed innovations. 

Figure 9: Conditional variance and standard residuals infers from AR(1)/GARCH(1,1) model for 

DAX 

 
Source: prepared by author 

 

Value
Standard 

Error

 t 

Statistic
Value

Standard 

Error
 t Statistic

Constant 0.084 0.018 4.615 0.039 0.012 3.395

AR{1} -0.021 0.018 -1.132 -0.067 0.013 -5.229

DoF 10.197 1.573 6.481 2.343 0.111 21.072

Model Parameter Value
Standard 

Error

 t 

Statistic
Value

Standard 

Error
 t Statistic

Constant 0.017 0.005 3.573 0.128 0.039 3.245

GARCH{1} 0.908 0.010 95.087 0.859 0.018 48.286

ARCH{1} 0.087 0.009 9.193 0.141 0.041 3.448

DoF 10.197 1.573 6.481 2.343 0.111 21.072

Model Parameter

DAX Index SAX Index

AR(1)

GARCH(1,1)
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Figure 10: Conditional variance and standard residuals infers from AR(1)/GARCH(1,1) model for 

SAX 

 
Source: prepared by author 

 

Step 9. Compare the model fits: Table 3 compare the two model fits (Gaussian and t innovation 

distribution) using the Akaike information criterion (AIC) and Bayesian information criterion (BIC).  

Table 3: AIC and BIC criterion for suggested models 

 
Source: prepared by author 

 

The second model has six parameters compared to five in the first model (because of the t distribution 

degrees of freedom). Despite this, both information criteria favor the model with the Student's t 

distribution and it is valid for DAX and SAX returns as well. The AIC and BIC values are smaller for 

the t innovation distribution 

As the last step is a test decision for the null hypothesis that the data of ressiduals comes from a 

normal distribution, using the Jarque-Bera test. Despite of the fact that we dramatically decreased jb 

statistics, we calculated the result h is 1 and the test rejects the null hypothesis at the 5% significance 

level. 

  

Gaussian t Gaussian t

AIC 12 217 12 162 11 424 9 844

BIC 12 248 12 199 11 455 9 881

SAX Index
Stat

DAX Index
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2.2 Value at Risk 

 

2.2.1. Definition and computing of Value at risk 

(VaR) is the most widely used risk measure in financial industry. In 1993, the business bank JP 

Morgan publicized its estimation method, RiskMetrics, for the VaR of a portfolio. VaR is now an 

indispensable tool for banks, regulators and portfolio managers. Hundreds of academic and 

nonacademic papers on VaR may be found at http://www.gloriamundi.org/ also a lot of books were 

written about VaR, some of them became bestsellers i.e Value at risk – the new benchmark for 

managing finacial risk by Jorion (1996) provided the first commprehensive description of value at 

risk. It quicly established itself as an indipensable reference on VaR and has been called ‘Industry 

standard’. Value at Risk theory and practise by Holton (2003) offers almost pure academic approuch 

with extensive theory of risk measure and metric. Measuring market Risk by Dowd (2005) overviewed 

of the state of the art in market risk measurement. VaR summurizes the worst loss over a target 

horizon with a given level of confidence. Mathematical definition: if L is the loss of a portfolio, then 

𝑉𝑎𝑅𝛼(𝐿) is the level α-quantile, i.e. 

𝑉𝑎𝑅𝛼(𝐿) = inf {𝑙 ∈ ℝ: 𝑃(𝐿 > 𝑙) = (1 − 𝛼)}  

For practical demonstration is used 1 day 99% VaR of DAX index  

𝑉𝑎𝑅0.99(𝐿) = inf {𝑙 ∈ ℝ: 𝑃(𝐿 > 𝑙) = 0.01}  

 

Many papers could be found with the keywords calculation of VaR. Many of them may be at 

http://gloria-mundi.com. Basic clasification by Dowd (2007): 

 Non-parametric approaches:  

o Basic historical simulation 

o Bootstrapped historical simulation 

o Historical simulation using non-parametric density estimation 

 Parametric approaches:  

o Unconditional distribution 

o Conditional distribution 

 Monte Carlo simulation 

 

  

http://gloria-mundi.com/


Prognostické práce, 6, 2014, č. 5 
417 

 

 

2.2.2. Compute VaR using GARCH(1,1) and compare with other methods 

This example shows calculation 1day 99% VaR of DAX Index
4
 using a composite conditional mean 

and variance model GARCH (1,1) for variance and AR(1) for mean from previous example. It is 

worth to calculate VaR using other basic methods to evaluate accuracy of GARCH model. For 

calculation VaR is used floating window of 2 000 historical observation of DAX index daily return in 

fact loss. 

VaR99_HS  VaR is calculated as 20
th
 worst loss from the 2 000 observations. 

 

VaR99_ND VaR is calculated as 99
th
 percentil of normal distribution with estimated 

mean and variance 

 

𝜇 = ∑ d_lnGDAX𝑖

2 000

𝑖=1

 

   

𝜎 = (
1

1 999
∑ (d_lnGDAX𝑖 − 𝜇)2

2 000

𝑖=1

)

0.5

 

   

VaR99_ND = μ − NormInv(0.99) ∗ σ  

 

µ sample mean 

σ corrected sample standard deviation 

NormInv computes the inverse of the standard normal cdf 

  

                                                           
4
 Methods of calculation VaR are described by DAX Index but it is valid in general also for SAX. 
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VaR99_AR1 VaR is Calculated as 99
th
 percentil of normal distribution with unconditional 

mean from AR(1) process and estimated variance 

 

est(d_lnGDAX)𝑡 = 𝜑0 + 𝜑1 ∗ d_lnGDAX𝑡−1  

 

VaR99_AR1 =  𝑒𝑠𝑡(dlnGDAX𝑡) − NormInv(0.99) ∗ σ  

 

est(d_lnGDAX) forecast of profit/loss generated by AR(1) model 

 

𝜑0, 𝜑1 parameters of AR(1) process 

 

NormInv computes the inverse of the standard normal cdf 

 

VaR99_G11_nd VarR is calculated as 99
th
 percentil of normal distribution with parameters 

specified by a conditional mean and variance model 

 

est(d_lnGDAX)𝑡 = 𝜑0 + 𝜑1 ∗ d_lnGDAX𝑡−1  

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)𝑡−1  

 

𝑉𝑎𝑅99_𝐺11𝑛𝑑 = est(d_lnGDAX)𝑡 − NormInv(0.99) ∗ est(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)0.5)  

 

est(d_lnGDAX) forecast of profit/loss generated by AR(1) model with  conditional variance 

forecasted by GARCH(1,1) model  

 

variance(d_lnGDAX) forecast of variance by GARCH(1,1) model 

 

𝜑0,𝜑1, 𝜔, 𝛼, 𝛽 parameters of common AR(1) process with conditional variance estimated 

by GARCH(1,1) model 

 

NormInv computes the inverse of the standard normal cdf 

 

VaR99_G11_sd VarR is calculated as as 99
th
 percentil of student distribution with parameters 

specified by a conditional mean and variance model 
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d_lnGDAX𝑡 = 𝜑0 + 𝜑1 ∗ d_lnGDAX𝑡−1  

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)𝑡−1  

 

𝑉𝑎𝑅99_𝐺11_𝑠𝑑 = 𝑒𝑠𝑡(dlnGDAX𝑡) − TInv(0.99) ∗
√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(d_lnGDAX)

√
𝑑𝑓

𝑑𝑓 − 2

 

   

est(d_lnGDAX) forecast of profit/loss generated by AR(1) model with conditional variance 

forecasted by GARCH(1,1) model 

 

variance(d_lnGDAX) forecast of variance by GARCH(1,1) model 

 

𝜑0,𝜑1, 𝜔, 𝛼, 𝛽 parameters of common AR(1) process with conditional variance  estimated 

by GARCH(1,1) model 

 

TInv Student's t inverse cumulative distribution function 

 

df  degree of freedom 

These calculations of VaR methods is used to estimate 1 day 99% VaR using 2 000 historical 

observation each working day from the 12th of November 2007 to the 28th of March 2014, it is 1 631 

working days. To demonstrate accuracy of each method is calculated number of situation when 

estimated VaR is more then realized loss; it is called the bridge.  

Results of estimation VaR of DAX returns are shown by figure 11, figure 12 and figure 13. For all 

methods situation when realized loss was over VaR is correleted with failor of Lehman Brothers in 

September of 2008 and European sovereign debt crisis before all EU countries agreed to expand the 

EFSF by creating certificates that could guarantee up to 30% of new issues from troubled euro-area 

governments. Table 4 provide basicoverview of accurancy of each method. From 1 631 estimation of 

VaR by historical simulation only 18 times occurred sitution when real loss was higher. But difference 

between VaR and time series of gain and loss is significant deep and this method shoul be noticed 

many banker as conservative. Unconditional parametric method are weak in terms of number of the 

bridges and difference is close to historical simulation. Path of profit/loss and GARCH(1,1) VaR time 

series shows correlation and by improvement with student distribution number of the bridegs are 

closer to theoretical expected values 16.3. 



Prognostické práce, 6, 2014, č. 5 
420 

 

 

Results of estimation VaR of SAX returns are shown by figure 14, figure 15 and figure 16 and 

conclusion from previos paragrph are almost applicable as well. Only all methods of calcualtion are 

less effective and resualts are more biased due the fact that all assumptions were not met. Table 4 

describes whole picture that Historical simulations is the nearest to theretical expected value of the 

brideges however path of estimated loss is far from realized losses on the other hand GARCH model 

with Students improvement has still accteble results and realized and estimated loss are the closest. 

 

Figure 11: Observed losses of DAX index compare to estimated 1 day 99% VaR calculated by non-

parametric method - historical simulation 

 

Source: prepared by author 

 

Figure 12: Observed losses of DAX index compare to estimated 1 day 99% VaR calculated by 

unconditional parametric methods – normal distribution, AR1 process 

 

Source: prepared by author 
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Figure 13: Observed losses of DAX index compare to estimated 1 day 99% VaR calculated by 

conditional parametric methods – GARCH (1,1) process  

 

Source: prepared by author 

 

Figure 14: Observed losses of SAX index compare to estimated 1 day 99% VaR calculated by non-

parametric method - historical simulation 

 

Source: prepared by author 

 

Figure 15: Observed losses of SAX index compare to estimated 1 day 99% VaR calculated by 

unconditional parametric methods – normal distribution, AR1 process 

 

Source: prepared by author 
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Figure 16: Observed losses of SAX index compare to estimated 1 day 99% VaR calculated by 

conditional parametric methods – GARCH (1,1) process  

 

Source: prepared by author 

 

Table 4: Count of situations when realized loss was above estimated VaR 

 

Source: prepared by author 

 

Conclusion 

The subject of the article is to analyse the necessity of adopting conditional volatility model for returns 

as shows Figure 1. Paper provided the basic demonstrations of theoretical result and illustrated the 

main techniques with numerical examples. Figure 7 and 9 proof that GARCH(1,1) is robust enough to 

model conditional volatility of DAX revenues despite the fact that ressidual does not follow Gaussian 

distribution. Student’s t distribution of innovation improves model sligtly. GARCH (1,1) is easy to 

calculate using Matlab, correct volatility on average, exaggerates volatility-of-volatility. Example of 

VaR calculating by using GARCH(1,1) shows a substantial gain in accuracy. VaR by GARCH(1,1) 

estimeted number of situation when observed loss is higher than estimated VaR worse than historical 

simulation however path of this estimation is much closer to real observations.  

Conclusion of modeling volatility of capital market is more useful for German economy according 

existing and pretty dynamic capital market and model of volatility offered path of instability for whole 

DAX SAX

# of observation 1 631 1497

1% of observation 16.3 15.0

VaR99_HS 18 18

VaR99_ND 38 29

VaR99_AR1 38 30

VaR99_G11_nd 33 27

VaR99_G11_sd 26 22

VaR Method
No of bridge
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economy especially in times of global shocks as internet bubble, failure of Lehman Brothers and 

sovereign debt crises. Volatility of growth in Slovak economy might be still represented by SAX index 

but results are not sufficient supported by significance of estimated parameters. This paper does not 

research whether capital market in Slovakia is sufficient or not however general opinion it is not. So to 

understand behavior of Slovak economy from perspective of entrepreneur might be worth to dive 

deeper to raw data from microeconomics perspective (number of failures or bankrupts of companies) 

and consider relations between German DAX due better indication of global crisis. Slovak data seems 

to be lagged which indicates that Slovak policy might have applicable alert how the market react to 

global crises but without opportunity to change the destiny. 
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